Progress in developing experimental design skills among junior high school learners

Authors

  • Luca Szalay Eotvos Lorand University
  • Zoltán Tóth University of Debrecen
  • Réka Borbás Szent István Secondary School
  • István Füzesi Eötvös Loránd University, Bolyai János Practicing School

DOI:

https://doi.org/10.36681/

Keywords:

Experimental design, inquiry-based education, guided inquiry, chemistry education

Abstract

This paper reports the findings of the second year of a four-year empirical research project. Its aim is to modify ‘step-by-step’ instructions for practical activities in a way that may enable the development of experimental design skills among junior high school learners. Each school year pupils spend six lessons doing practical activities using worksheets we provide. At the beginning of the research, the Grade 7 (12–13-year-old) pupils were divided into three groups. Group 1 (control group) followed step-by-step instructions. Group 2 followed the same instructions as Group 1, but after the experiment, they answered a series of questions on their worksheets concerned with the design of the experiment. Group 3 was required to design the experiments, guided by a similar set of questions.The impact of the intervention on pupils' experimental design skills (EDS) and disciplinary content knowledge (DCK) was measured using structured tests at the beginning of the project and at the end of both school years. Seven hundred fifty-six (756) Grade 8 pupils completed the test at the end of the second school year (April-May 2023). Over the first two years, the intervention resulted in a medium effect size positive change in the EDS of Group 3 compared to the control group (Group 1), (Cohen's d: 0.23). By the end of the second year of the project, there was only a small difference in the change in DCK between the experimental groups and the control group (Cohen's d value for Group 2: 0.10 and for Group 3: 0.12).

Downloads

Download data is not yet available.

Author Biographies

  • Luca Szalay, Eotvos Lorand University

    MTA-ELTE Research Group on Inquiry-Based Chemistry Education, Research Programme for Public Education Development of the Hungarian Academy of Sciences, Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary, assistant professor,corresponding author, e-mail: luca.szalay@ttk.elte.hu phone: +36 20 360 6910 ORCID ID: 0000-0003-0176-0645

  • Zoltán Tóth, University of Debrecen

    University of Debrecen, Faculty of Science and Technology, Institute of Chemistry, Egyetem tér 1., H-4032 Debrecen, Hungary, associate professor (retired), e-mail: tothzoltandr@gmail.com ORCID ID: 0009-0000-4806-6840

  • Réka Borbás, Szent István Secondary School

    Szent István Secondary School, Ajtósi Dürer sor 15., 1146 Budapest, Hungary, chemistry teacher, e-mail: rborbas02@gmail.com ORCID ID: 0000-0002-9671-087X

  • István Füzesi, Eötvös Loránd University, Bolyai János Practicing School

    Eötvös Loránd University, Bolyai János Practicing School, Bolyai János utca 11., H-9700 Szombathely, Hungary, chemistry teacher,  e-mail: fistvan@bolyaigimnazium.elte.hu ORCID ID: 0000-0003-4826-1819

References

Agustian, H. Y., & Seery, M. K. (2017). Reasserting the role of pre-laboratory activities in chemistry education: a proposed framework for their design. Chem. Educ. Res. Pract., 18, 518–532.

Akuma, F. V., & Callaghan, R. (2019). A systematic review characterizing and clarifying intrinsic teaching challenges linked to inquiry-based practical work. J. Res. Sci. Teach., 56, 619–648.

Allred, Z. R., Shrode, A. D., Gonzalez, J., Rose, A., Abigail, I., Green, A. I., Swamy, U., Matz, R. L., & Underwood, S. M. (2022). Impact of Ocean Acidification on Shelled Organisms: Supporting Integration of Chemistry and Biology Knowledge through Multidisciplinary Activities. J. Chem. Educ. 99, 2182−2189.

Arnold, J. C., Boone, W. J., Kremer, K., & Mayer, J. (2018). Assessment of competencies in scientific inquiry through the application of Rasch measurement techniques, Educ. Sci., 8, 184.

Arnold, J. C., Mu ̈hling, A., & Kremer, K. (2021). Exploring core ideas of procedural understanding in scientific inquiry using educational data mining. Res. Sci. Technol. Educ., 41, 1–21.

Baird, J. R. (1990). Metacognition, purposeful inquiry and conceptual change, In E. Hegarty-Hazel. (Ed.), The student laboratory and the science curriculum (pp. 183−200). London: Routledge.

Banchi H., & Bell R., (2008), The many levels of inquiry, Sci. Child., 46(2), 26–29.

Belova, N., & Krause, M. (2023). Inoculating students against science-based manipulation strategies in social media: debunking the concept of ‘water with conductivity extract’. Chem. Educ. Res. Pract., 24, 192-202.

Blanchard M. R., Southerland S. E., Osborne J. W., Sampson V. D., Annetta L. A., & Granger E. M. (2010). Is inquiry possible in light of accountability?: a quantitative of the relative effectiveness of guided inquiry and verification laboratory instruction, Science Education, 94, 577–610.

Böyük U., Tanık N., & Saracog˘lu S. (2011), Analysis of the scientific process skill levels of secondary school students based on different variables, J. TUBAV Sci., 4(1), 20–30.

Burke, K., Greenbowe, T. J., & Hand B. M. (2006). Implementing the Science Writing Heuristic in the Chemistry Laboratory. J. Chem. Educ., 83, 1032–1038.

Cannady, M. A., Vincent-Ruz, P., Chung, J. M., & Schunn, C. D. (2019). Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemp. Educ. Psychol., 59, 1–15.

Chen, L., & Xiao, S. (2020). Perceptions, challenges and coping strategies of science teachers in teaching socioscientific issues: A systematic review. Educational Research Review, 32, 100377.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd ed. Routledge. ISBN: 9780805802832

Cooper, M. M. (2013). Chemistry and the Next Generation Science Standards. J. Chem. Educ., 90, 679–680.

Cothron, J. H., Giese, R. N., & Rezba, R. J. (2000). Students and Research: Practical Strategies for Science Classrooms and Competitions, 3rd ed. Dubuque, IA: Kendall/Hunt Publishing Company.

Crocker, L., & Algina, J. (2006). Introduction to Classical and Modern Test Theory, 2nd ed., Wadsworth Publishing Company: Belmont, CA.

Cronbach. L. J., & Meehl, P. E. (1955). Construct Validity in Psychological Tests. Psychol. Bullet., 52, 281−302.

Crujeiras-Pérez B., & Jiménez-Aleixandre M. P. (2017). High school students’ engagement in planning investigations: findings from a longitudinal study in Spain, Chem. Educ. Res. Pract., 18, 99-112.

Csíkos, Cs., Korom, E., & Csapó, B. (2016). Tartalmi keretek a kutatásalapú tanulás tudáselemeinek értékeléséhez a természettudományokban. Iskolakultúra, 26(3), 17. DOI: 10.17543/ISKKULT.2016.3.17.

del Mar López-Fernández, M., González-García, F., & Franco-Mariscal, A. J. (2022). How Can Socio-scientific Issues Help Develop Critical Thinking in Chemistry Education? A Reflection on the Problem of Plastics. J. Chem. Educ., 99, 3435–3442.

Education and Training Monitor (2020), Luxembourg: Publications Office of the European Union. PDF DOI: 10.2766/984100

Ernawati, M. D. W., Yusnidar, Haryanto, Rini, E.F.S., Aldila, F.T., Haryati,T. &Perdana, R. (2023). Do creative thinking skills in problem-based learning benefit from scaffolding?. Journal of Turkish Science Education, 20(3), 399-417.

European Union. (2016). Horizon 2020: Work Programme 2016–2017: Science with and for Society. European Commission Decision C(2016)1349 of 9 March 2016.

Farley, E. R., Fringer, V., & Wainman, J. W. (2021). Simple Approach to Incorporating Experimental Design into a General Chemistry Lab. J. Chem. Educ., 98, 350–356.

Goodey, N. M., & Talgar, C. P. (2016). Guided inquiry in a biochemistry laboratory course improves experimental design ability. Chem. Educ. Res. Pract., 17, 1127.

Gott, R., & Duggan S. (1998). Understanding Scientific Evidence –Why it Matters and How It Can Be Taught, in Ratcliffe M.(ed.), ASE (The Association for Science Education) Guide to Secondary Science Education, Cheltenham: Stanley Thornes, pp. 92–99.

Güden, C., & Timur B. (2016). Ortaokul öğrencilerinin bilimsel süreç becerilerinin incelenmesi (Çanakkale örneği) [Examining secondary school students’ cognitive process skills (Canakkale sample)], Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi,16(1), 163–182.

Hendra, Y. A. (2022). Considering the hexad of learning domains in the laboratory to address the overlooked aspects of chemistry education and fragmentary approach to assessment of student learning. Chem. Educ. Res. Pract., 23, 518–530.

Hennah, N., Newton, S., & Seery, M. K. (2022). A holistic framework for developing purposeful practical work. Chem. Educ. Res. Pract., 23, 582–598.

Jiménez-Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran, & M. P. Jiménez-Aleixandre. (Eds.), Argumentation in Science Education. Perspectives from Classroom-Based Research (pp. 3−27). Springer: Dordrecht.

Johnstone, A. H. (1997). Chemistry teaching – Science or alchemy? 1996 Brasted lecture. J. Chem. Educ., 74, 262–268.

Johnstone, A. H. (2006). Chemical education research in Glasgow in perspective. Chem. Educ. Res. Pract., 7, 49–63.

Kirschner, P. A. (1992). Epistemology, practical work and academic skills in science education. Sci. Educ., 1, 273–299.

Klemeš, J. J., Fan, Y. V., & Jiang, P. (2021). Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(13), 1549−1565.

Koomson, A., Kwaah, C.Y., & Adu-Yeboah, C. (2024).Effect of science process skills and entry grades on academic scores of student teachers. Journal of Turkish Science Education, 21(1), 118-133.DOI: 10.36681/tused.2024.007

Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview, In THEORY INTO PRACTICE, Volume 41, Number 4 (pp. 212–218). College of Education, The Ohio State University.

Lavonen, J., Ávalos, B., Upadyaya, K., Araneda, S., Juuti, K., Cumsille, P., Inkinen, J., & Salmela-Aro, K. (2021). Upper secondary students’ situational interest in physics learning in Finland and Chile, Int. J. Sci. Ed., 43:16, 2577-2596, DOI: 10.1080/09500693.2021.1978011

Lawrie, G. (2021). Considerations of sample size in chemistry education research: numbers do count but context matters more! Chem. Educ. Res. Pract., 22, 809–812.Lawrie G. A., Graulich N.,

Kahveci A., & Lewis S. E. (2021). Ethical statements: a refresher of the minimum requirements for publication of Chemistry Education Research and Practice articles, Chem. Educ. Res. Pract., 22, 234–236.

Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: effects of guidance. Rev. Educ. Res., 86, 681–718.

Linn, M. C., Davis, E. A., & Bell, P. (2004). Inquiry and technology. In Internet environments for science education (pp. 3–28). Mahwah, NJ: Lawrence Erlbaum Associates.

MacDonald, R. P., Pattison, A. N., Cornell, S. E., Elgersma, A. K., Greidanus, S. N., Visser, S. N., Hoffman, M., & Mahaffy, P. G. (2022). An Interactive Planetary Boundaries Systems Thinking Learning Tool to Integrate Sustainability into the Chemistry Curriculum. J. Chem. Educ., 99, 3530−3539.

Mack, M. R., Hensen, C., & Barbera, J. (2019). Metrics and Methods Used To Compare Student Performance Data in Chemistry Education Research Articles. J. Chem. Educ. 96, 401–413.

Mahaffy, P. G., Brush, E. J., Haack, J. A., & Ho, F. M. (2018). Journal of Chemical Education Call for Papers Special Issue on Reimagining Chemistry Education: Systems Thinking, and Green and Sustainable Chemistry. J. Chem. Educ., 95, 1689–1691.

Matthews, M. R. (2018). History, Philosophy and Science Teaching – New Perspectives, Cham: Springer.

Moog, R. S., & Spencer, J. N. (2008). Process Oriented Guided Inquiry Learning (POGIL); American Chemical Society, Division of Chemical Education: Washington, DC.

Mostafa, T., Echazarra, A., & Guillou, H. (2018). The science of teaching science: An exploration of science teaching practices in: PISA 2015, OECD Education Working Papers Series, No. 188, https://doi.org/10.1787/f5bd9e57-en

National Core Curriculum of Hungary, (2020), 5/2020. (I. 31.) Korm. rendelet A Nemzeti alaptanterv kiadásáról, bevezetéséről és alkalmazásáról szóló 110/2012. (VI. 4.) Korm. rendelet módosításáról, Magyar Közlöny, 2020. jan. 31., 17, (pp. 290–446)., A Kormány 5/2020. (I. 31.) Korm. rendelete a Nemzeti alaptanterv kiadásáról, bevezetéséről és alkalmazásáról szóló 110/2012. (VI. 4.) Korm. rendelet módosításáról – eGov Hírlevél, accessed June 17 2023.

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas, Washington, DC: The National Academies Press.

Neri, N. C., Guill, K., & Retelsdorf, J. (2021). Language in science performance: Do good readers perform better? Eur. J. Psychol. Educ., 36, 45–61.

NGSS Lead States. (2013). Next Generation Science Standards: For States, by States (Appendix F – Science and Engineering Practices). In Achieve, Inc. behalf twenty-six states partners that Collab.

NGSS, (November) (pp. 1–103).

OECD. (2016). PISA 2015 Results (Volume II): Policies and Practices for Successful Schools, PISA, OECD Publishing, Paris, https://doi.org/10.1787/9789264267510-en

Ofoegbu, L. I. J. (1984). Acquisition of science process skills among elementary pupils in some northern states of Nigeria, Unpublished PhD dissertation, Nsukka: University of Nigeria.

Onukwo G. I. N. (1995). Development and validation of a test of science process skills in integrated science, Unpublished PhD dissertation, Nsukka: University of Nigeria.

Orgill, M., York, S., & MacKellar, J. (2019). Introduction to Systems Thinking for the Chemistry Education Community. J. Chem. Educ., 96, 2720−2729.

Oxford Learner’s Dictionaries. (2024). enquiry noun - Definition, pictures, pronunciation and usage notes | Oxford Advanced Learner's Dictionary at OxfordLearnersDictionaries.com, accessed April 11 2024.

Pedaste, M., Maeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle, Educ. Res. Rev., 14, 47–61.

Potier, D. N. (2023). The Use of Guided Inquiry to Support Student Progress and Engagement in High School Chemistry. J. Chem. Educ., 100, 1033–1038.

Puntambekar, S., & Kolodoner, J. K. (2005). Toward implementing distributed scaffolding: helping students learn science from design, Journal of Research in Science Teaching, 42, 185–271.

Reed, J. J., & Holme, T. A. (2014). The Role of Non-Content Goals in the Assessment of Chemistry Learning. In: L. K. Kendhammer, & K. L. Murphy (Eds.), Innovative Uses of Assessment for Teaching and Research (pp. 147–160). American Chemical Society: Washington, DC

Reynders, G., Suh, E., Cole, R. S., & Sansom, R. L. (2019). Developing Student Process Skills in a General Chemistry Laboratory. J. Chem. Educ., 96, 2109−2119.

Rocard, M. (2007). Science Education NOW: A Renewed Pedagogy for the Future of Europe. Brussels: European Commision. Directorate-General for Research, rapportrocardfinal.pdf (europa.eu), accessed April 11 2024.

Rodriguez, J. M. G., & Towns, M. H. (2018). Modifying laboratory experiments to promote engagement in critical thinking by reframing prelab and postlab questions. J. Chem. Educ., 95, 2141–2147.

Russ, R. S. (2014). Epistemology of science vs. epistemology for science. Sci. Educ., 98(3), 388–396.

Schafer, A. G. L., Kuborn, T. M., Cara, E., Schwarz, C. E., Megan Y., Deshaye, M. Y., & Stowe, R. L. (2023). Messages about valued knowledge products and processes embedded within a suite of transformed high school chemistry curricular materials. Chem. Educ. Res. Pract., 24, 71–88.

Schoffstall, A. M., & Gaddis, B. A. (2007). Incorporating Guided-Inquiry Learning into the Organic Chemistry Laboratory. J. Chem. Educ., 84, 848.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference; Houghton Mifflin: Boston, MA.

Siegler, R. S., Deloache, J. S., & Eisenberg, N. (2010). Study Guide for How Children Develop. Worth Publishers

Snook, I., O’Neil, J., Clark, J., O’Neil, A., & Opneshaw, R. (2009). Invisible Learnings: A commentary on John Hattie's book Visible learning: A synthesis of over 800 metaanalyses relating to achievement, New Zealand Journal of Educational Studies, 44(1):93–106.

Szalay L., & Tóth Z. (2016), An inquiry-based approach of traditional ’step-by-step’ experiments. Chem. Educ. Res. Pract., 17, 923–961.

Szalay L., Tóth Z., & Borbás, R. (2021). Teaching of experimental design skills: results from a longitudinal study. Chem. Educ. Res. Pract., 22, 1054–1073.

Szalay L., Tóth Z., & Kiss, E. (2020). Introducing students to experimental design skills. Chem. Educ. Res. Pract., 21, 331–356.

Szalay, L., Tóth, Z., Borbás, R., & Füzesi, I. (2023). Scaffolding of experimental design skills. Chem. Educ. Res. Pract., 24, 599–623.

Szozda, A. R., Bruyere, K., Lee, H., Mahaffy, P. G. & Flynn, A. B. (2022) Investigating Educators’ Perspectives toward Systems Thinking in Chemistry Education from International Contexts. J. Chem. Educ., 99, 2474−2483.

Tosun C. (2019). Scientific process skills test development within the topic ‘‘Matter and its Nature’’ and the predictive effect of different variables on 7th and 8th grade students’ scientific process skill levels, Chem. Educ. Res. Pract., 20, 160-174.

Tseng, Y-J., Hong, Z-R., & Lin, H-s. (2022). Advancing students’ scientific inquiry performance in chemistry through reading and evaluative reflection. Chem. Educ. Res. Pract., 23, 616–627.

Underwood, S., Posey, L., Herrington, D., Carmel, J., & Cooper, M. (2018). Adapting assessment tasks to support three-dimensional learning. J. Chem. Educ., 95 (2), 207–217.

van Brederode, M. E., Zoon, S. A., & Meeter, M. (2020). Examining the effect of lab instructions on students’ critical thinking during a chemical inquiry practical. Chem. Educ. Res. Pract., 21, 1173−1182.

Vedder-Weiss, D., & Fortus, D. (2011). Adolescents’ declining motivation to learn science: Inevitable or not? J. Res. Sci. Teach., 48(2), 199–216.

Vedder-Weiss, D., & Fortus, D. (2013). School, teacher, peers, and parents’ goals emphases and adolescents’ motivation to learn science in and out of school. J. Res. Sci. Teach., 50(8), 952–988.

Walker, J. P., & Sampson, V. (2013). Learning to argue and arguing to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. J. Res. Sci. Teach., 50(5), 561−596.

Walters, Y. B., & Soyibo K. (2001). An analysis of high school student’s performance on five integrated science process skills, Res. Sci. Techol. Educ., 19(2), 133–143.

Wang, Y., & Lewis, S. E. (2022). Towards a theoretically sound measure of chemistry students’ motivation; investigating rank-sort survey methodology to reduce response style bias. Chem. Educ. Res. Pract., 23, 240-256.

Watts, F. M., & Finkenstaedt-Quinn, S. A. (2021). The current state of methods for establishing reliability in qualitative chemistry education research articles. Chem. Educ. Res. Pract., 22, 565–578.

Wheatley, K. (2018). "Inquiry-based learning: Effects on student engagement". Honors Projects. 417., https://core.ac.uk/download/pdf/234759864.pdf

Wren, D., & Barbera, J. (2013). Gathering evidence for validity during the design, development, and qualitative evaluation of thermochemistry concept inventory items. J. Chem. Educ., 90, 1590–1601.

Xu, H., & Talanquer, V. (2013), Effect of the level of inquiry of lab experiments on general chemistry students’ written reflections. J. Chem. Educ. 90(1), 21−28.

Zhang, J., & Zhou, Q. (2023). Chinese chemistry motivation questionnaire II: adaptation and validation of the science motivation questionnaire II in high school students. Chem. Educ. Res. Pract., 24, 369–383.

Downloads

Issue

Section

Articles

Published

25.09.2024

How to Cite

Szalay, L., Tóth, Z., Borbás, R., & Füzesi, I. (2024). Progress in developing experimental design skills among junior high school learners. Journal of Turkish Science Education, 21(3), 484-511. https://doi.org/10.36681/

Similar Articles

1-10 of 506

You may also start an advanced similarity search for this article.