The effect of cognitive Conflict-Based Learning (CCBL) Model on remediation of misconceptions
DOI:
https://doi.org/10.36681/Keywords:
CCBL model, misconception, remediating, science learningAbstract
The phenomena of misconception and the poor conceptual understanding are the problems frequently occur in science learning. Traditional learning models have not yet had significant impact on the improvement of conceptual understanding and the effort for misconceptions remedies. This study aims to find out the effectiveness of cognitive conflict-based learning model in enhancing students’ conceptual understandings and remediating their misconceptions. The method used is a quasi-experiment with control group pretest-posttest design. The samples consist of three sample classes of the students from department of physics. The research instrument is a static fluid concept test with two tier-multiple choice test type which completed by an open-ended test. The data obtained in the form of the students’ conceptual understanding levels which were analyzed by using the technique of percentage. The results show that the cognitive conflict-based learning (CCBL) model is effective in reducing misconceptions, whereas the traditional learning precisely adds misconceptions. The implication of this research is the CCBL model has smart syntaxes, namely, (1) activation of preconception and misconception, (2) presentation of cognitive conflict, (3) discovery of concepts and equations, and (4) reflection, which have advantages in remediating misconceptions, besides it can improve the students’ conceptual understanding.
Downloads
References
Aini, S., & Mufit, F. (2022). Using Adobe Animate CC Software in Designing Interactive Multimedia Based on Cognitive Conflict in Straight Motion. Jurnal Penelitian Pendidikan IPA, 8(5), 2350–2361. https://doi.org/10.29303/jppipa.v8i5.2048
Akmam, A., Hidayat, R., Mufit, F., Jalinus, N., & Amran, A. (2022). Factor Analysis Affecting the Implementation of the Generative Learning Model with a Cognitive Conflict Strategy in the Computational Physics Course during the COVID-19 Pandemic Era. Educational Administration: Theory and Practice, 28(1), 64–74. https://doi.org/10.17762/kuey.v28i01.324
Akmam, A., Hidayat, R., Mufit, F., Jalinus, N., & Amran, A. (2022). Need analysis to develop a generative learning model with a cognitive conflict strategy oriented to creative thinking in the Computational Physics course. Journal of Physics: Conference Series, 2309(1). https://doi.org/10.1088/1742-6596/2309/1/012095
Al-Rsa’i, M. S., Khoshman, J. M., & Tayeh, K. A. (2020). Jordanian Pre-Service Physics Teacher ’ s Misconceptions about Force and Motion. Journal of Turkish Science Education, 17(4), 528–543. https://doi.org/10.36681/tused.2020.43
Al Tabany, T. I. B. (2014). Mendesain Model Pembelajaran Inovatif, Progresif dan Kontekstual [Designing Innovative, Progressive and Contextual Learning Models]. Kencana.
Alwan, A. A. (2011). Misconception of heat and temperature among physics students. Procedia - Social and Behavioral Sciences, 12, 600–614. https://doi.org/10.1016/j.sbspro.2011.02.074
Anam, R. S., Widodo, A., Sopandi, W., & Wu, H. K. (2019). Developing a five-tier diagnostic test to identify students’ misconceptions in science: an example of the heat transfer concepts. Elementary Education Online, 18(3), 1014–1029. https://doi.org/10.17051/ilkonline.2019.609690
Anggraini, S. F., Mufit, F., Dwiridal, L., Programof, S., Education, P., Padang, U. N., & Hamka, J. P. (2022). The Validity of Interactive Multimedia Based on Cognitive Conflict on Elasticity Materials Using Adobe Animate CC 2019. Journal of Social Science (EJOSS), 8(1), 13–22. https://doi.org/10.37134/ejoss.vol8.1.2.2022
Arifin, F. A., Mufit, F., & Asrizal. (2021). Validity and practicality of interactive multimedia based on cognitive conflict integrated new literacy on thermodynamic and mechanical waves material for class xi high school students. Journal of Physics: Conference Series, 1876(1). https://doi.org/10.1088/1742-6596/1876/1/012052
Baddock, M., & Bucat, R. (2008). Effectiveness of a classroom chemistry demonstration using the cognitive conflict strategy. International Journal of Science Education, 30(8), 1115–1128. https://doi.org/10.1080/09500690701528824
Baser, M. (2006). Fostering Conceptual Change by Cognitive Conflict Based Instruction on Students’ Understanding of Heat and Temperature Concepts. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 96–114.
Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261. https://doi.org/10.1007/BF00118013
Budi, F., & Kartika, Y. (2009). Pembelajaran Fisika yang Humanistis [the Humanistic Learning of Physics]. In P. J. Suwarno (Eds.), Pendidikan Sains yang Humanistis (pp. 158–184). Kanisius.
Carin, A. A. (1997). Teaching Science Through Discovery (8th ed.). Pearson Prentice Hall.
Çepni, S. (2009). Effects of computer supported instructional material (CSIM) in removing students misconceptions about concepts: ‚Light, light source and seeing.‛ Energy Education Science and Technology Part B-Social and Educational Studies, 1, 51–83.
Çepni, S., & Keleş, E. (2006). Turkish students’ conceptions about the simple electric circuits. International Journal of Science and Mathematics Education, 4(2), 269–291. https://doi.org/10.1007/s10763-005-9001-z
Chrzanowski, M. M., Grajkowski, W., Żuchowski, S., Spalik, K., & Ostrowska, B. E. (2018). Vernacular
Misconceptions in Teaching Science – Types and Causes. Journal of Turkish Science Education, 15(4), 29–54. https://doi.org/10.12973/tused.10244a
David, E., & Clement, J. (1987). Overcoming Misconceptions in Mechanics: A Comparison of Two Example-Based Teaching Strategies. American Educational Research Association, 35.
Delvia, T. F., Mufit, F., & Bustari, M. (2021). Design and Validity of Physics Teaching Materials Based on Cognitive Conflict Integrated Virtual Laboratory in Atomic Nucleus. Pillar of Physics Education, 14(1), 05. https://doi.org/10.24036/10354171074
Dhanil, M., & Mufit, F. (2021). Design and Validity of Interactive Multimedia Based on Cognitive
Conflict on Static Fluid Using Adobe Animate CC (2019). Jurnal Penelitian & Pengembangan Pendidikan Fisika, 7(2), 177–190. https://doi.org/10.21009/1.07210
Dirman, H. M., Mufit, F., & Festiyed, F. (2022). Review and Comparison of Four-Tier Multiple Choice and Five-Tier Multiple Choice Diagnostic Tests to Identify Mastery of Physics Concepts. Jurnal Penelitian Pendidikan IPA, 8(1), 1–12. https://doi.org/10.29303/jppipa.v8i1.838
Ezema, M. J., Ugwuany, C. S., Okeke, C. I., & Orji, E. I. (2022). Influence of Cognitive Ability on Students’ Conceptual Change in Particulate Nature of Matter in Physics. Journal of Turkish Science Education, 19(1), 194–217. https://doi.org/10.36681/tused.2022.118
Foster, C. (2012). Creationism as a Misconception: Socio-cognitive conflict in the teaching of evolution. International Journal of Science Education, 34(14), 2171–2180. https://doi.org/10.1080/09500693.2012.692102
Gurel, D. K., Eryilmaz, A., & McDermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 989–1008. https://doi.org/10.12973/eurasia.2015.1369a
Habiddin, & Page, E. M. (2019). Development and validation of a four-tier diagnostic instrument for chemical kinetics (FTDICK). Indonesian Journal of Chemistry, 19(3), 720–736. https://doi.org/10.22146/ijc.39218
Hacker, D. J., Dunlosky, J., & Graesser, A. C. (1998). Metacognition in educational theory and practice. Erlbaum. https://doi.org/10.4324/9781410602350
Halim, L., Yong, T. K., & Meerah, T. S. M. (2014). Overcoming Students’ Misconceptions on Forces in Equilibrium: An Action Research Study. Creative Education, 05(11), 1032–1042. https://doi.org/10.4236/ce.2014.511117
Kabaca, T., Karadag, Z., & Aktumen, M. (2011). Misconception, cognitive conflict and conceptual changes in geometry: A case study with pre-service teachers.pdf. Meviana International Journal of Education, 1(2), 44–55.
Kaçar, S., & Balim, A. G. (2021). Investigating the Effects of Argument-Driven Inquiry Method in Science Course on Secondary School Students’ Levels of Conceptual Understanding. Journal of Turkish Science Education, 18(4), 816–845. https://doi.org/10.36681/tused.2021.105
Kaniawati, I., Fratiwi, N. J., Danawan, A., Suyana, I., Samsudin, A., & Suhendi, E. (2019). Analyzing students’ misconceptions about Newton’s Laws through Four-Tier Newtonian Test (FTNT). Journal of Turkish Science Education, 16(1), 110–122. https://doi.org/10.12973/tused.10269a
Kartal, T., Öztürk, N., & Yalvaç, H. G. (2011). Misconceptions of science teacher candidates about heat and temperature. Procedia - Social and Behavioral Sciences, 15(May), 2758–2763. https://doi.org/10.1016/j.sbspro.2011.04.184
Khotimah, F. N. (2015). Miskonsepsi Konsep Archaebacteria dan Eubacteria [Misconceptions of the Concept of Archaebacteria and Eubacteria]. Edusains, 6(2), 117–128. https://doi.org/10.15408/es.v6i2.1112
Küçüközer, H., & Kocakülah, S. (2008). Effect of simple electric circuits teaching on conceptual change in grade 9 physics course. Journal of Turkish Science Educ, 5(1), 59–75. http://www.tused.org/internet/tufed/arsiv/v5/i1/metin/tusedv5i1s4.pdf
Liang, S. (2016). Teaching the concept of limit by using conceptual conflict strategy and desmos graphing calculator. International Journal of Research in Education and Science, 2(1), 35–48. https://doi.org/10.21890/ijres.62743
Luthfi, I., Mufit, F., & Putri, M. R. N. (2021). Design of Physical Teaching Materials Based on Cognitive Conflict Learning in Direct Current Electricity Integrating Virtual Laboratory. Pillar of Physics Education, 14(1), 37. https://doi.org/10.24036/10771171074
Madu, B. C., & Orji, E. (2015). Effects of Cognitive Conflict Instructional Strategy on Students’ Conceptual Change in Temperature and Heat. SAGE Open, 5(3). https://doi.org/10.1177/2158244015594662
Meyer, D. K. (1993). Recognizing and Changing Students’ Misconceptions: An Instructional Perspective. College Teaching, 41(3), 104–108. https://doi.org/10.1080/87567555.1993.9926789
Mubarokah, F. D., Mulyani, S., & Indriyanti, N. Y. (2018). Identifying students’ misconceptions of acid-base concepts using a three-tier diagnostic test: A case of Indonesia and Thailand. Journal of Turkish Science Education, 15(Special Issue), 51–58. https://doi.org/10.12973/tused.10256a
Mufit, F., Asrizal, A., & Puspitasari, R. (2020). Meta-Analysis of the Effect of Cognitive Conflict on Physics Learning. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 6(2), 267–278. https://doi.org/10.21009/1.06213
Mufit, F., & Fauzan, A. (2019). Model Pembelajaran Berbasis Konflik Kognitif (PbKK) (Disertai Penerapan Untuk Remediasi Miskonsepsi pada Sains dan Matematika) [Cognitive ConflictBased Learning Model (Accompanied by Application for Remediation of Misconceptions in Science and Mathematics)]. In Cv Irdh.
Mufit, F., Festiyed, F., Fauzan, A., & Lufri, L. (2018). Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding. IOP Conference Series: Materials Science and Engineering, 335(1). https://doi.org/10.1088/1757-899X/335/1/012072
Mufit, F., Festiyed, Fauzan, A., & Lufri. (2019). The application of real experiments video analysis in the CCBL model to remediate the misconceptions about motion’s concept. Journal of Physics: Conference Series, 1317(1), 0–10. https://doi.org/10.1088/1742-6596/1317/1/012156
Niaz, M. (1995). Cognitive conflict as a teaching strategy in solving chemistry problems: A dialectic– constructivist perspective. Journal of Research in Science Teaching, 32(9), 959–970. https://doi.org/10.1002/tea.3660320907
Ormrod, J. E. (2006). Educational Psycology: Developing Learner. Pearson Merrill Prentice Hall.
Parwati, N. N., & Suharta, I. G. P. (2020). Effectiveness of the implementation of cognitive conflict strategy assisted by e-service learning to reduce students’ mathematical misconceptions. International Journal of Emerging Technologies in Learning, 15(11), 102–118. https://doi.org/10.3991/IJET.V15I11.11802
Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond Cold Conceptual Change: The Role of Motivational Beliefs and Classroom Contextual Factors in the Process of Conceptual Change. In Review of Educational Research (Vol. 63, Issue 2). https://doi.org/10.3102/00346543063002167
Puspitasari, R., Mufit, F., & Asrizal. (2021). Conditions of learning physics and students’ understanding of the concept of motion during the covid-19 pandemic. Journal of Physics: Conference Series, 1876(1). https://doi.org/10.1088/1742-6596/1876/1/012045
Putri, A. H., Samsudin, A., & Suhandi, A. (2022). Exhaustive Studies before Covid-19 Pandemic Attack of Students’ Conceptual Change in Science Education: A Literature Review. Journal of Turkish Science Education, 19(3), 808–829. https://doi.org/10.36681/tused.2022.151
Rahim, R. A., Noor, N. M., & Zaid, N. M. (2015). Meta-analysis on element of cognitive conflict strategies with a focus on multimedia learning material development. International Education Studies, 8(13), 73–78. https://doi.org/10.5539/ies.v8n13p73
Resbiantoro, G., Setiani, R., & Dwikoranto. (2022). A Review of Misconception in Physics: The Diagnosis, Causes, and Remediation. Journal of Turkish Science Education, 19(2), 403–427. https://doi.org/10.36681/tused.2022.128
Rohandi, R. (2009). Memberdayakan Anak Melalui Pendidikan Sains [Empowering Children Through Science Education]. In P. J. Suwarno (Ed.), Pendidikan Sains yang Humanistis (pp. 112–126). Kanisius.
Şahin, Ç., Ipek, H., & Çepni, S. (2010). Computer supported conceptual change text: Fluid pressure. Procedia - Social and Behavioral Sciences, 2(2), 922–927. https://doi.org/10.1016/j.sbspro.2010.03.127
Samsudin, A., Afif, N. F., Nugraha, M. G., Suhandi, A., Fratiwi, N. J., Aminudin, A. H., Adimayuda, R., Linuwih, S., & Costu, B. (2021). Reconstructing Students’ Misconceptions on Work and
Energy through the PDEODE*E Tasks with Think-Pair-Share. Journal of Turkish Science Education, 18(1), 118–144. https://doi.org/10.36681/tused.2021.56
Saputri, D. F., & Sarwanto. (2011). Penyebab dan remediasi miskonsepsi gaya menggunakan multimedia dan modul [Causes and remediation of style misconceptions using multimedia and modules]. Jurnal Materi Dan Pembelajaran Fisika, 58–71.
Sasmito, A. P., & Sekarsari, P. (2022). Enhancing Students’ Understanding and Motivation During Covid-19 Pandemic via Development of Virtual Laboratory. Journal of Turkish Science Education, 19(1), 180–193. https://doi.org/10.36681/tused.2022.117
Schleigh, S. P., Clark, D. B., & Menekse, M. (2015). Constructed-Response as an Alternative to Interviews in Conceptual Change Studies: Students’ Explanations of Force. International Journal of Education in Mathematics, Science and Technology, 3(1), 14. https://doi.org/10.18404/ijemst.59892
Septiana, D., Zulfiani, Z., & Noor, M. F. (2015). Identifikasi Miskonsepsi Siswa Pada Konsep Archaebacteria dan Eubacteria Menggunakan Two-Tier Multiple Choice [Identification of Students’ Misconceptions on the Concepts of Archaebacteria and Eubacteria Using Two-Tier Multiple Choice]. Edusains, 6(2), 191–200. https://doi.org/10.15408/es.v6i2.1151
Suharso, & Retnoningsih, A. (2012). Kamus Besar Bahasa Indonesia [Indonesian Dictionary]. Widya Karya.
Sumaji. (2009). Dimensi Pendidikan IPA dan Pengembangannya sebagai Disiplin Ilmu [Dimensions of Science Education and Its Development as a Discipline]. In P. J. Suwarno (Ed.), Pendidikan Sains yang Humanistis (pp. 31–49). Kanisius.
Suparno, P. (2013). Miskonsepsi dan Perubahan Konsep dalam Pendidikan Fisika [Misconceptions & Concepts Changes in Physics Education]. Grasindo.
Suwarto. (2013). Pengembangan Tes Diagnostik dalam Pembelajaran: Panduan Praktis bagi Pendidik dan Calon Pendidik [Development of Diagnostic Tests in Learning: A Practical Guide for Educators and Prospective Educators]. Pustaka Pelajar.
Taşar, M. F. (2010). What part of the concept of acceleration is difficult to understand: The mathematics, the physics, or both? ZDM - International Journal on Mathematics Education, 42(5), 469–482. https://doi.org/10.1007/s11858-010-0262-9
Taufiq, M. (2012). Remediasi miskonsepsi mahasiswa calon guru fisika pada konsep gaya melalui penerapan model siklus belajar (Learning cycle) 5E [Remediation of misconceptions of prospective physics teacher students on the concept of force through the application of the 5E]. Jurnal Pendidikan IPA Indonesia, 1(2), 198–203. https://doi.org/10.15294/jpii.v1i2.2139
Taufiq, M., & Hindarto, N. (2011). Student’S Science Misconceptions Concerning the State Changes of Water and Their Remediation Using Three Different Learning Models in Elementary School. Jurnal Pendidikan Fisika Indonesia, 7(2), 74–79.
Trumper, R. (1997). Applying conceptual conflict strategies in the learning of the energy concept. Research in Science and Technological Education, 15(1), 5–18. https://doi.org/10.1080/0263514970150101
Zimrot, R., & Ashkenazi, G. (2007). Interactive lecture demonstrations: A tool for exploring and enhancing conceptual change. Chemistry Education Research and Practice, 8(2), 197–211. https://doi.org/10.1039/B6RP90030E
Downloads
Issue
Section
Published
License
Copyright (c) 2023 Journal of Turkish Science Education
This work is licensed under a Creative Commons Attribution 4.0 International License.