Analysis of the forms of argumentation of teachers in training in the context of a socio-scientific issue
DOI:
https://doi.org/10.36681/Keywords:
Argumentation in the sciences, forms of argumentation, teacher trainingAbstract
The aim of this study is to analyze the forms of argumentation regarding a socio-economic question related to the consumption of coffee by a group of 32 students with a Bachelor’s Degree in Natural Science and Environmental Education. For this, a rubric was used to analyze three fundamental aspects: content, structure, and position or response in the face of the arguments. The results indicate that the students can produce arguments with content, but difficulties are observed in regard to their developing arguments with structure. Furthermore, the students tend to avoid debate situations, which does not allow for the improvement of their arguments. Despite that, the participants acknowledge the importance of including argumentation in their training, and they are aware of their difficulties. This indicates the need to promote a greater number of studies that would allow the importance of argumentation to be included in the educational processes.
Downloads
References
Aktamiş, H.; Hiğde, E.; Özden, B. (2016). Effects of the Inquiry-Based Learning Method on Students’ Achievement, Science Process Skills and Attitudes towards Science: A Meta-Analysis Science. Journal of Turkish Science Education, 13(4), 248-26.
Alexander, R. (2006). Towards dialogic teaching: Rethinking classroom talk. York: Diálogos.
Aristóteles. (2000). Tratados de Lógica (Órganon). Madrid: Gredos.
Asterhan, C.S., & Schwarz, B. (2007). The effects of monological and dialogical argumentation on concept learning in evolutionary theory. Journal of Educational Psychology, 99(3), 626–639.
Azar, A. (2010). The Effect of Critical Thinking Dispositions on Students Achievement in Selection and Placement Exam for University in Turkey. Journal of Turkish Science Education, 7(1), 61-73.
Berland, L. K., & Lee, V. R. (2012). In pursuit of consensus: Disagreement and legitimization during small-group argumentation. International Journal of Science Education, 34(12), 1857-1882.
Beuchot, M. (1987). Las falacias y las paradojas lógico-semánticas en la Edad Media. Manuscrito: revista internacional de filosofía, 10(1), 75-84.
Bochenski, I. M., (1966). Historia de la lógica formal. Madrid: Gredos.
Celik, A. Y., & Kilic, Z. (2014). The Impact of Argumentation on High School Chemistry Students’ Conceptual Understanding, Attitude towards Chemistry and Argumentativeness. Eurasian Journal of Physics and Chemistry Education, 6(1), 58-75.
Chi, M. T. (2009). Active‐constructive‐interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73-105.
Cristancho, J. G. (2013). Algunos diálogos sobre educación. Medellín: Universidad de Antioquia.
Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40(2), 133-148.
Dimopoulos, K., & Koulaidis, V. (2003). Science and technology education for citizenship: The potential role of the press. Science Education, 87(2), 241-256.
Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of research in education, 32(1), 268-291.
Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Perspectives from classroom-Based Research. Dordre-cht: Springer.
Evagorou, M., & Osborne, J. (2013). Exploring young students' collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209-237.
Garrido, M. (1991). Lógica simbólica. Madrid: Tecnos.
Gültepe, N.; & Kiliç, Z. (2013). Scientific Argumentation and Conceptual Understanding of High School Students on Solubility Equilibrium and Acids and Bases. Journal of Turkish Science Education, 10(4), 5-21.
Hakyolu, H., & Ogan-Bekiroglu, F. (2016). Interplay between content knowledge and scientific argumentation. Eurasia Journal of Mathematics, Science & Technology Education, 12(12) 3005-3033.
Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687.
Jiménez -Aleixandre, M. P. J. (2010). 10 ideas clave. Competencias en argumentación y uso de pruebas (Vol. 12). Graó.
Jiménez Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: an overview. In S. Erduran y M. P. Jiménez Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 3-27). Dordrecht: Springer.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science education, 85(3), 291-310.
Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824.
Lunetta, V. N., Hofstein, A., & Clough, M. P. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory and practice. In S. Abell y N. Lederman (Eds.), Handbook of research on science education (pp. 393 – 442). Mahwah, NJ: Erlbaum.
Martinez, L. (2010). A abordagem de questões sociocientíficas na formação continuada de professores de ciências: contribuições e dificuldades. Tesis Doctoral. Universidade estadual paulista. Campus Universitário de Bauru.
Mcneill, K., González, M., Katsh, R., & Loper, S. (2017). Moving Beyond Pseudoargumentation: Teachers’ Enactments of an Educative Science Curriculum Focused on Argumentation. Science Education. 101; 426-457. doi:10.1002/sce.21274
Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and instruction, 14(2), 139-178.
Mercer, N., & Littleton, K. (2007). Dialogue and the development of children's thinking: A sociocultural approach. Routledge.
Namdar, B., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socioscientific issues. International Journal of Science Education, 38(7), 1100-1132.
Nielsen, J. A. (2012). Science in discussions: An analysis of the use of science content in socioscientific discussions. Science Education, 96(3), 428-456.
Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84-106.
Oliveras, B., Márquez, C., & Sanmartí, N. (2013). The use of newspaper articles as a tool to develop critical thinking in science classes. International Journal of Science Education, 35(6), 885–905.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466.
Osborne, J. Erduran S, & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1024.
Penha, S. P. D. (2012). Atividades sociocientíficas em sala de aula de física: as argumentações dos estudantes (Doctoral dissertation, Universidade de São Paulo).
Plantin, C. & Muñoz, N. (2011). El Hacer Argumentativo. Buenos Aires: Biblos.
Porlán, R. & Martin, R. (1996). Ciencia, profesores y enseñanza: unas relaciones complejas. Alambique, 8, 23-32.
Russell, B. (2013). Logica y conocimiento. Barcelona. RBA
Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472.
Sampson, V., & Walker, J. P. (2012). Argument-driven inquiry as a way to help undergraduate students write to learn by learning to write in chemistry. International Journal of Science Education, 34(10), 1443-1485.
Sandoval, W. A., & Millwood, K. A. (2007). What can argumentation tell us about epistemology?. In Argumentation in science education (pp. 71-88). Springer Netherlands.
Sarda, A & Sanmarti, N. (2000). Enseñar a argumentar cientificamente: Un reto de las clases de ciencias. Enseñanza de las ciencias, 18(3), 405-422.
Solbes, J. (2013). Contribución de las cuestiones sociocientíficas al desarrollo del pensamiento crítico (I): Introducción. Revista eureka sobre enseñanza y divulgación de las ciencias, 10,1-10.
Torres, N., & Solbes, J., (2016). Contribuciones de una intervención didáctica usando cuestiones socio-científicas para desarrollar el pensamiento crítico. Enseñanza de las Ciencias, 34(2), 43-65.
Torres, N. Y. (2016). Caracterización del razonamiento informal desde el uso de una cuestión socio-científica con profesores en formación en ciencias naturales. Revista Electrónica de Investigación en Educación en Ciencias, 11(1),18-30.
Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students' argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952-977.
Wittgenstein, L. (2012). Tractatus logico-philosophicus. Madrid: Alianza.
Yin, R. K. (2003). Case study research. Design and methods (3ª Edición). California: Sage Publications
Zeidler, D. L., Herman, B. C., Ruzek, M., Linder, A., & Lin, S. (2013). Cross‐cultural epistemological orientations to socioscientific issues. Journal of Research in Science Teaching, 50(3), 251-283.
Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of research in science teaching, 39(1), 35-62.
Zuluaga V., J. (1990). Los factores que determinan la calidad del café verde. In: federacion nacional de cafeteros de colombia. Centro nacional de investigaciones de café, Cenicafé. 50 años de Cenicafé 1938-1958, Conferencias conme-morativas. Chinchiná, Cenicafé, p. 167-183.
Downloads
Issue
Section
Published
Versions
- 15.03.2018 (2)
- 15.03.2018 (1)
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.