Impacts of the use of a digital simulation in learning earth sciences (the case of relative dating in high school)

Authors

  • Youssef Nafıdı
  • Anouar Alamı
  • Moncef Zakı
  • Bouchta El Batrı
  • Hanane Afkar

DOI:

https://doi.org/10.36681/

Keywords:

Earth Sciences, relative chronology, high school, learning, simulation

Abstract

In an attempt to evaluate the impact of the use of a simulation on the learning concepts of relative dating, a study was carried out with first year students at the Technical High School of the city of Taza (Morocco). The method of the study was semi-experimental research design with pre-test and post-test. The study used two groups including the experimental (n = 16) and control (n = 16) groups. The learning outcomes of both groups of students were compared and analysed for significance using the Student’s t-test and the Mann-Whitney U test. The findings showed that the integration of a simulation of relative chronology can have a positive effect on students’ learning if it is properly integrated at an appropriate time during the students’ training.

Downloads

Download data is not yet available.

References

Agorram, B., Khzami, S., & Selmaoui, S. (2015). A la redecouverte des lois de la génétique classique par l'utilisation d'un logiciel de simulation/ [rediscovery of the genetic's laws by using a genetics program]. International Journal of Innovation and Applied Studies, 12(4), 776.http://www.ijias.issr journals.org/abstract.php?article=IJIAS-15-097-05

Ault, C. R. (1994). Research on problem solving: earth science. In D. L. Gabel (ed.) Handbook of Research on Science Teaching and Learning (New York: Macmillan), 269–283.

Bachelard, S. (1979). Quelques aspects historiques des notions de modèle et de justification des modèles. Maloine.

Bibeau, R. (2005). Les TIC à l'école : proposition de taxonomie et analyse des obstacles à leur intégration, Revue électronique de l'EPI, EpiNet n° 79

Boughanmi, Y. (2009). Obstacles à la problématisation du temps dans une approche interdisciplinaire : l’explication de quelques phénomènes naturels par des lycéens et de futurs enseignants tunisiens. Thèse de doctorat en Sciences de l’Education-Philosophie des Sciences. Université de Bourgogne et Université de Tunis, Bourgogne, France.

Bransford, J. D., Brown, A. L., Cocking, R. R. (Eds. ). (2000). How People Learn: Brain, Mind, Experience, and School. National Academy Press.

Buty, C. (2003). Richesses et limites d'un « modèle matérialisé » informatisé en optique. Didaskalia, n° 23, 39-63.

Cholmsky, P. (2003). Why gizmos work: Empirical evidence for the instructional effectiveness of Explore Learning’s interactive content. Charlottesville, VA: Explore Learning.

Clark, R. (1994). Media will never influence learning. Educational Technology Research and Development, 42(2), 21-29.

Clements, D. H. et McMillen, S. (1996). Rethinking "Concrete" Manipulatives. Teaching Children Mathematics. 2(5), p. 270-279.

Dalgarno, B., Bishop, A. G., Adlong, W., & Bedgood, D. R. (2009). Effectiveness of a virtual laboratory as a preparatory resource for distance education chemistry students. Computers & Education, 53(3), 853-865.

De Jong, T. (1991). Learning and instruction with computer simulations. Education and Computing, 6(3-4), 217-229.

De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of educational research, 68(2), 179-201.

Depover, C., Karsenti, T., & Komis, V. (2007). Enseigner avec les technologies: favoriser les apprentissages, développer des compétences. PUQ.

D'Hainaut, L. (1975). Concepts et méthodes de la statistique: un guide pour l'application de l'outil statistique aux phénomènes et aux situations des sciences de l'homme et de l'éducation, ed. E. Labor.

Dodick, J., & Orion, N. (2003). Geology as an historical science: Its perception within science and the education system. Science & Education, 12(2), 197-211.

Droui, M. El Hajjami, A. Benali Amjoud, A. et Ahaji, K. (2015). Exploration des conceptions naïves à propos de la force et du mouvement chez des lycéens marocains. RADISMA, Numéro 11.

Droui, M., & El Hajjami, A. (2014). Simulations informatiques en enseignement des sciences: apports et limites. EpiNet : revue électronique de l’EPI, 164.

Droui, M., El Hajjami, A., Bouklah, M., & Zouirech, S. (2013). Impact de l'apprentissage par problème sur la compréhension conceptuelle de la mécanique newtonienne. EpiNet: Revue électronique de l'EPI, 157.

Durán, M. J., Gallardo, S., Toral, S. L., Martínez-Torres, R., & Barrero, F. J. (2007). A learning methodology using Matlab/Simulink for undergraduate electrical engineering courses attending to learner satisfaction outcomes. International Journal of Technology and Design Education, 17(1), 55-73

Durbin. J. M. (2002). The benefit of combining computer technology and traditional teaching methods in large enrolment geoscience classes. Journal of Geoscience Education, 50, 56-63.

El hassouny, E., Kaddari, F., Elachqar, A., & Alami, A. (2014). Teaching/Learning Mechanics in High School with the Help of Dynamic Software. Procedia-Social and Behavioral Sciences, 116, 4617-4621.

El Ouidadi, O., Lakdim, A., Essafi, K., & Sendide, K. (2011). Contribution à l'évaluation de l'impact de l'intégration des TICE dans l'enseignement et l'apprentissage: exemple de la division cellulaire (mitose) en deuxième année de baccalauréat sciences expérimentales.

Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. Geological Society of America Bulletin, 107(8), 960-968.

Gambari, I. A., Gbodi, B. E., Olakanmi, E. U., & Abalaka, E. N. (2016). Promoting Intrinsic and Extrinsic Motivation among Chemistry Students Using Computer-Assisted Instruction. Contemporary Educational Technology, 7(1), 25-46.

Gelbart, H., Brill, G., & Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in Science Education, 39(5), 725-751.

Gibbons, N. J., Evans, C., Payne, A., Shah, K., & Griffin, D. K. (2004). Computer simulations improve university instructional laboratories. Cell Biology Education, 3(4), 263-269.

Gibbons, N. J., Evans, C., Payne, A., Shah, K., & Griffin, D. K. (2004). Computer simulations improve university instructional laboratories. Cell Biology Education, 3(4), 263-269.

Gilbert, N., & Savard, J. G. (1992). Statistiques. Laval, Québec : Éditions Études vivantes.

Gobert J., Slotta, J. & Pallant, A., Nagy, S. & Targum, E. (2002). A WISE Inquiry Project for Students’ East-West Coast Collaboration, Presented at the Annual Meeting of the American Educational Research Association, New Orleans, LO.

Gohau G. (2001), « La géologie, discipline mal aimée », in Etudes sur l’enseignement des sciences physiques et naturelles, Cahiers d’histoire et de philosophie des sciences, textes réunis par Nicole Hulin, ENS éditions

Gould, S.-J. (1990). Aux racines du temps, ed. G.e. Fasquelle.

Grabe, M. et Grabe, C. (1996). Integrating Technology for Meaningful Learning. Boston: Houghton Miflin Co.

Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: Students’ cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24, 803-821.

Jimoyiannis, A. & V. Komis. (2001). Computer Simulations in Physics and Learning: A Case Study on Students' Understanding of Trajectory Motion. Computers and Education, 36, p. 183-204.

Joubert, R., Rebmann, G., & Desmond, P. (2000). Integration of computer simulation programs in teaching sequences of Newtonian mechanics for freshmen at university. In R. Pinto & S. Surinach (éd.). Actes International Conference, Physics Teacher Education beyond.

Kali T. (2003). A virtual journey within the rock-cycle: a software kit for the development of systems-thinking in the context of the Earth’s crust. Journal of Geoscience Education, 51,165-170.

Kennepohl, D. (2001). Using computer simulations to supplement teaching laboratories in chemistry for distance delivery. Journal of Distance Education, 16(2), 58-65.

Kiboss, J. K., Ndirangu, M., & Wekesa, E. W. (2004). Effectiveness of a computer-mediated simulations program in school biology on pupils' learning outcomes in cell theory. Journal of Science Education and Technology, 13(2), 207-213.

Kutluca, T., Arslan, S., & Özpinar, Ý. (2010). Developing a Scale to Measure Information and Communication Technology Utilization Levels. Journal of Turkish Science Education, 7(4), 37.

Lamarti, L., Ben-Bouziane, A., Akrim, H., & TALBI, M. (2009). La sortie de terrain: quelle place et quel rôle dans une démarche scientifique?. RADISMA, Numéro 4. ISSN 1990-3219.

Lavoie, D. R. et Good. R. (1988). The nature and use of prediction skills in a biological computer simulation. Journal of Research in Science Teaching, 25, 335-360.

Lazarowitz, R. et Huppert, J. (1993). Science process skills of 10th-grade biology students in a computer-assisted learning setting. Journal of Computing In Education, 25, 366-382.

Learn, H. P. (2000). Brain, mind, experience, and school. Committee on Developments in the Science of Learning.

LEBRUN, M. (2003). Des technologies pour enseigner, Brussels. 1999, Université De Boeck.

Lefèvre, O., & Sanchez, E. (2006). Géonote : un environnement informatique d'aide au travail sur le terrain pour l'enseignement des sciences de la Terre. Papier présenté à la conférence Biennale de l'éducation, Lyon.

Linn, M. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727-758.

Luo, W., J. Pelletier, K. Duffin, C. Ormand, W. C. Hung, D. J. Shernoff, X. Zhai, E. Iverson, K. Whalley, C. Gallaher and W. Furness (2016). Advantages of computer simulation in enhancing students’ learning about landform evolution: A case study using the grand canyon. Journal of Geoscience Education, 64(1), 60-73.

Marshall, J. A., & Young, E. S. (2006). Preservice teachers' theory development in physical and simulated environments. Journal of Research in Science Teaching, 43(9), 907-937.

Martínez-Jiménez, P., Pontes-Pedrajas, A., Polo, J., & Climent-Bellido, M. S. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346-352.

Martin, L. A. (1997). Road Map 2: The First Step. MIT System Dynamics in Education Project.

McKinney, W. J. (1997). The educational use of computer based science simulations: some lessons from the philosophy of science. Science et Education, 6, p. 591-603.

McKnight, P. E., & Najab, J. Mann‐Whitney U Test. Corsini Encyclopedia of Psychology. 2010.

Meir, E., Perry, J., Stal, D., Maruca, S., & Klopfer, E. (2005). How effective are simulated molecular-level experiments for teaching diffusion and osmosis? Cell Biology Education, 4(3), 235-248.

Michael, K. Y. (2001). The effect of a computer simulation activity versus a hands-on activity on product creativity in technology education.

Mintz, R. (1993). Computerized simulation as an inquiry tool. School Science and Mathematics, 93(2), 76-80.

Monchamp A. & Sauvageot- Skibine M. (1995). Du fixisme à la tectonique des plaques. Et pourtant elles bougent. Aster, n 20, 4-20.

Nachar, N. (2008). The Mann-Whitney U: a test for assessing whether two independent samples come from the same distribution. Tutorials in Quantitative Methods for Psychology, 4(1), 13-20.

Nuhoðlu, H., & Nuhoðlu, M. (2007). System dynamics approach in science and technology education. Journal of Turkish Science Education, 4(2), 91.

Padilla, M. J., Okey. J. R., Dillashaw. F. G. (1983). The relationship between science process skill and formal thinking abilities. Journal of Research in Science Teaching, 20, 239-246.

Perreault, N. (2003). Rôle et impact des TIC sur l’enseignement et l’apprentissage au collégial–I. Pédagogie collégiale, 16(3), 3-10.

Raab, T., & Frodeman, R. (2002). What is it like to be a geologist? A phenomenology of geology and its epistemological implications. Philosophy & Geography, 5(1), 69-81.

Rassou, K. K., Khiri, F., Benbrahim, M., Tamraoui, Y., Elberrani, H., & Anfour, M. (2017). Difficultés Relatives A L’enseignement-Apprentissage De La Géologie En Classes Secondaires Qualifiantes Cas De La Délégation d’Inzegane Ait Melloul. European Scientific Journal, ESJ, 13(18).

Richoux B., Salvetat C. et Beaufils D. (2002). Simulation numérique dans l'enseignement de la physique : enjeux, conditions, Bulletin de l'Union des Physiciens, n°842, 497-522.

Rieber, L. P. (1990). Using computer animated graphics in science instruction with children. Journal of educational psychology, 82(1), 135.

Roth, W. M., & Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 30(2), 127-152.

Rutten, N., W. R. van Joolingen and J. T. van der Veen (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.

Sanchez, E. (2003). Chronocoupe : un logiciel pour l'apprentissage du raisonnement diachronique en sciences de la Terre. Ignorances et questionnements. Chamonix: Actes JIES.

Sanchez, E. (2007). Investigation scientifique et modélisation pour l'enseignement des sciences de la Terre Contribution à l'étude de la place des technologies numériques dansla conduite d'une classe de terrain au lycée (Doctoral dissertation, Université Claude Bernard-Lyon I).

Sanchez, É. (2008). Quelles relations entre modélisation et investigation scientifique dans l’enseignement des sciences de la terre ? Éducation et didactique, 2(2), 93-118.

Sanchez, E., & Prieur, M. (2006). Démarche d'investigation dans l'enseignement des sciences de la Terre: activités-élèves et scénarios. In actes électroniques du colloque Scénarios, 71-76.

Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050-1078.

Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.

Stengers, I. (1993). L'invention des sciences modernes. Éditions La Découverte, paris.

Stern, L., Barnea, N., & Shauli, S. (2008). The effect of a computerized simulation on middle school students’ understanding of the kinetic molecular theory. Journal of Science Education and Technology, 17(4), 305-315.

Strauss, R., and Kinzie, M. B. (1994). Student achievement and attitudes in a pilot study comparing an interactive videodisc simulation to conventional dissection. American Biology Teacher 56, 398-402.

Thomas, R., et Hooper, E. (1991). Simulations: An opportunity we are missing. Journal of Research on Computing in Education, 23, 497-513.

Torres, J., Moutinho, S., & Vasconcelos, C. (2015). Nature of science, scientific and geoscience models: Examining students and teachers' views. Journal of Turkish Science Education, 12(4).

Trend, R. (2000). Conceptions of geological time among primary teacher trainees, with reference to their engagement with geoscience, history, and science. International Journal of Science Education, 22(5), 539-555

Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088.

Walker, C. O., Greene, B. A., & Mansell, R. A. (2006). Identification with academics, intrinsic/extrinsic motivation, and self-efficacy as predictors of cognitive engagement. Learning and individual differences, 16(1), 1-12.

White, B. et Frederiksen, J. (2000). Technological tools and instructional approaches for making scientific inquiry accessible to all. In M. Jacobson and R. Kozma (Eds), Innovations in Science and Mathematics Education: Advanced Designs for Technologies of Learning (p. 321-359). Mahwah, NJ: Lawrence Erlbaum Associates.

Wilensky, U. et Stroup, W. (2000). « Networked gridlock: Students enacting complex dynamic phenomena with the HubNet architecture ». Paper presented at the Fourth Annual International Conference of the Learning Sciences, Ann Arbor, MI.

Windschitl, M. A. (1995). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Retrospective Theses and Dissertations.

Yaman, M., Nerdel, C., & Bayrhuber, H. (2008). The effects of instructional support and learner interests when learning using computer simulations. Computers & Education, 51(4), 1784-1794.

Yoon, S. Y., & Peate, D. W. (2015). Teaching What I Learned’: Exploring students’ Earth and Space Science learning experiences in secondary school with a particular focus on their comprehension of the concept of ‘geologic time. International Journal of Science Education, 37(9), 1436-1453.

Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry‐based experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823.

Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120-132.

Zietsman, A. I., and P. W. Hewson. (1986). Effects of instruction using microcomputer simulations and conceptual change learning strategies in science learning, Journal of Research in Science Teaching, 23, 27-39.

Downloads

Issue

Section

Articles

Published

15.03.2018 — Updated on 15.03.2018

Versions

How to Cite

Nafıdı, Y. ., Alamı, A. ., Zakı, M. ., El Batrı, B. ., & Afkar, H. . (2018). Impacts of the use of a digital simulation in learning earth sciences (the case of relative dating in high school). Journal of Turkish Science Education, 15(1), 89-108. https://doi.org/10.36681/

Similar Articles

1-10 of 417

You may also start an advanced similarity search for this article.